

GCRF Sustainable futures for the Costa Rica dairy sector – training workshop, CATIE, 5-6th October 2017

Ammonia emissions from agriculture: impacts, sources and mitigation

Tom Misselbrook

Overview

- Introduction
 - Reactive N
 - Impacts and effects
 - Emission process
- Emission sources
 - Agricultural
 - Livestock housing
 - Manure storage
 - Manure and fertiliser application
 - Outdoor livestock
- Potential mitigation

Global demands

Figure 2.3 World population: 1950-2010 and projections (three variants)

Figure 1.2

Source: FAO World Towards Agriculture, 2012

Planetary boundaries

Source: Steffen et al. 2015 Stockholm Resilience Centre

Reactive N – the Nitrogen Cascade

Oenema et al. (2007b)

Net Anthropogenic Nitrogen Inputs to watersheds

Billen et al. (2013) Phil Trans B http://rstb.royalsocietypublishing.org/content/368/1621/20130123

Ammonia

Environmental impacts:

- Eutrophication
- Soil acidification
- Local and long-range deposition
- Particulate formation
- Indirect GHG

San Joaqin valley – particulate formation

Nitrogen loving Xanthoria near a poultry farm (L); nitrogen intolerant Bryoria fuscens (R)

Baseline impacts calculated for 2020 - Europe

Source: IIASA, 2008

Emission sources

European ammonia emissions

Ammonia – emission sources

housing

storage

grazing

fertilisers

spreading

Ammonia – emission process

Grazing

- Rapid infiltration of urine low emissions (c. 10% of urine N)
- Emissions from dung very low as mostly organic N

Housing emissions

Sources: Manure storage

Sources: Manure spreading

Slurry – typically surface broadcast to grassland or arable

FYM – typically broadcast to arable land

Manure spreading – typical emission curves

- Greater loss from solid manures (no infiltration)
- Slow hydrolysis of uric acid for poultry manure
- Pig slurry tends to be more dilute than cattle

UK ammonia emission factors for livestock

Average annual emission, kg NH₃ per animal

	N excreted	Animal housing	Manure storage	Manure spreading	Grazing	TOTAL (% of N excreted)
Dairy cow	128	13.0	3.5	8.3	1.8	26.7 (21)
Other cattle	56	3.4	0.9	2.1	1.3	7.7 (14)
Fattening pig	13.3	2.3	0.9	1.0	0.1	4.3 (32)
Sow	18.1	2.4	0.7	0.4	1.1	4.4 (28)
Sheep/goat	9	0.1	0.1	0.0	0.3	0.5 (6)
Laying hen	0.6	0.13	0.02	0.08	0.01	0.24 (38)
Broiler	0.4	0.02	0.01	0.05		0.08 (21)

Emissions from N fertilisers

 $EF = EF_{max} \times RF_{soilpH} \times RF_{landuse} \times RF_{rate} \times RF_{ration} \times RF_{temperature}$

Maximum potential emission factor, modified by a series of reduction factors according to:

- Fertiliser type
- Soil pH
- >Land use
- >Application rate
- ➢ Rainfall
- ➢ Temperature

	EF (%N)
Ammonium nitrate (CAN)	1.7
Urea	9.7
UAN	4.9
AS/DAP	2.9

Mitigation

A.PORT

Mitigation – Reactive Nitrogen

Reduce inputs (or increase outputs) – emission intensity
 Increase efficiency of utilisation
 Reduce losses

Low emission animal housing systems - cattle

Limited options:

Reduction in emissions

70%

- Grooved-floor systems with toothed scrapers (new build)
 35%
 £500 per animal place additional upfront cost
- Acidification/flushing further assessment needed
- Washing down collecting yards £46 per animal place
 Activity data

Low emission animal housing systems - pigs

Slurry-based systems: Reduction in emissions

- Partially-slatted floors with reduced pit 30% area £55 per animal place upfront cost
- Air scrubbers 80% £54 per animal place upfront cost
- Flooring systems definition/evidence
- In-house acidification (e.g. Denmark)

Straw-bedded/naturally ventilated: Few options

Co-benefits of scrubbers – PM reduction

Low emission animal housing systems - poultry

Layers:

Reduction in emissions

- Belt-drying of manure 30%
 £0.34 per animal place operating cost
- Air scrubbers
 £2.47 per animal place upfront cost

Broilers:

- Litter drying heat exchangers 30% £0.23 per animal place annual cost
- Air scrubbers
 £2.47 per animal place upfront cost

Co-benefits of scrubbers – PM reduction

Rigid tank covers

Reduction efficiency 80%

£22.40 per m³ slurry upfront cost

- Applicability not always possible to retro-fit
- Co-benefits exclude rainfall, reduce other emissions

Floating covers

Reduction efficiency 60% £3.25 - £6.91 per m³ slurry upfront cost

- Applicability can apply to existing stores
- Secondary impacts may increase N₂O emissions

Slurry bags

- 'Pillows' for increasing current capacity
- Full systems to replace tanks/lagoons

Reduction efficiency – estimated at 95%

Assumed cost neutral for replacing existing slurry storage Upfront cost £29 per m3 slurry (cf £34 for steel tank and £17 for lagoon)

- Applicability is an alternative to current systems, therefore may take a long time to penetrate the sector
- Co-benefits reduction of other emissions

- Practicalities difficult where heaps sequentially formed
- Waste sheeting
- Current requirement for poultry field heaps in NVZ

Reduction efficiency 60%

- Annual cost £0.70 per tonne manure
- Only makes sense if manure is rapidly incorporated after spreading

Low emission spreading approaches

Slurry

Low emission spreading approaches

Rapid incorporation – within 4h, 12h, 24h Reduction efficiency 17 – 82% Timing, method and manure type influence efficacy

Cost

Pert manure spread £0.08 - 1.57

Slurry acidification

- Reduce slurry pH to <5.5
- Emission reduction up to 70%
- Acidify during storage or using specially adapted tanker
- Becoming common in Denmark

N fertiliser applications

Urea

- Switch from urea to AN
- Use urease inhibitor; combined inhibitors
- Soil incorporation

Reduction efficiency urease inhibitor 70

Cost Per kg N applied

£0.15 - but variable

Crop yield benefits?

- Fertiliser value of saved NH₃-N
- Yield benefits often not significant

Encourage use of DSS

Use less fertiliser for same yield

MACC for ammonia mitigation measures for agriculture

An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture

Newell Price, J.P., Harris, D., Taylor, M., Williams, J.R., Anthony, S.G., Duethmann, D., Gooday, R.D., Lord, E.I. and Chambers, B.J. (ADAS), and Chadwick, D.R. and Misselbrook, T.H. (Rothamsted Research, North Wyke)

December 2011

Prepared as part of Defra Project WQ0106

Options for Ammonia Mitigation

Guidance from the UNECE Task Force on Reactive Nitrogen

Any questions?

